
Undecidability



We are going to show that there are problems that can't be solved 
on any Turing Machine.  We need to develop a standard way to 
represent TMs.

I. You should have learned in Discrete Math that the binary strings 
(strings of 0s and 1s) are countable.  Here is a way to list them: 0, 
1, 00, 10,01,11, 000, 100, 010, 110, 001, 101, 011, 111, ... There 
are many other ways.  It doesn't matter which enumeration we 
use; just choose one and stick to it.  Let Bi be the ith binary string 
in this enumeration.



TMs are allowed to have more than one final state but we can always 
recode them to have just one.

We can rename the states of any TM q1, q2, ...qn where q1 is the start 
state and qn is the only final state.



q1

Happy is the TM that immediately enters a final state, so it accepts 
everything:

q1

It  will help to have two standard TMS.  Grumpy has no final states, so 
it rejects everything:



Here is a way to represent a TM as a binary string:
a) Represent state qi with 0i

b) Number the tape symbols X1..Xn and represent Xi with 0i

c) Encode the directions L as 01 and R as 02.
d) Encode the transition d(qi,Xj)=(qk,Xl,Dm) as 

0i10j10k10l10m

e) Encode the complete transition function as t111t211...11tn

where the ti are the encodings of the individual transitions.
f) Encode the TM with final state tn as T1110n where T is the 

encoding of the transition function.



Example: Grumpy is  111   (no transitions, no final state)

Example: Happy is 1110



The tape alphabet is {B,0,1} which we'll encode  as {0, 00, 000}
Transitions
d(q1,1)=(q1,1, R) is 01000101000100
d(q1,0)=(q2,0, R) is 0100100100100

Altogether the TM is 0100010100010011010010010010011100

q1 q2

0|0R

1|1R

Example:



Since the set of all binary strings is countable, we can count the 
TMs:  Suppose wi is the ith binary string. Let  Mi be the TM 
represented by wi if there is one, and Grumpy if there isn't.  Every 
TM will be Mi for some i.

Since Mi is a TM we can ask if it accepts or rejects any string w. In 
particular we can ask if Mi accepts or rejects its own representation 
wi.    We know that Grumpy rejects its representation 111 and 
Happy accepts its representation 1110.



The diagonal language Ld = {w| w=wi for some i and Mi does not 
accept wi}. We know that 111, the representation for Grumpy, is in Ld

as is every string that does not represent a TM.

Theorem: Ld is not recursively enumerable (i.e., not accepted by a 
TM)
Proof: Suppose TM M accepts Ld. Since M is a TM it is Mi for some i.  
Now, is wi in Ld? If so  then Mi accepts wi (since M=Mi accepts all of 
Ld.) But then by the definition of Ld wi is not in Ld.  On the other 
hand, if wi is not in Ld then Mi doesn't accept wi, so wi must be in Ld. 
Any way we go there is a contradiction.  So no TM can accept Ld.



We are going to talk about the differences between recursive and 
recursively enumerable languages. Here are two easy results:

Theorem: If a language is recursive then its complement is also 
recursive.
Proof: If the language is recursive then it is accepted by a TM that 
always halts. "Complete" the TM by giving it a "dead" state and 
replacing every missing transition with a transition to the dead state. 
Now the TM always halts in either the final state or the dead state. 
Switching the final and dead states gives a TM for the complement of 
the language.



Theorem: If a language and its complement are both recursively 
enumerable then the language is recursive.
Proof: Suppose M1 accepts the language and M2 its complement. Use 
a 3-tape TM that has string w on tape 1 and simulates the tapes for 
M1 and M2 on the other  two tapes. Simulate the running of M1 and 
M2 on w.  One of them will eventually halt in an accept state.  If M1 
accepts w then the simulator halts and accepts  w. If M2 accepts w 
then the simulator halts and rejects w.  This is TM that always halts 
that accepts the language.



The universal language Lu is  {m1111w | m is the encoding of a TM 
M and w is an input string and M accepts w}

Theorem: Lu is recursively enumerable.
Proof: We need a universal simulator -- a TM that takes  as input the 
encoding for a TM and simulates it. We use a 3-tape TM. Tape 1 has 
the input m111w.  Tape 2 simulates M's tape. This has two tracks --
one is the contents of M's tape the other has a pointer to the current 
square on M's  tape. Tape 3 has M's current state.

(cont'd next slide)



At the start tape 1 has m1111w and the other tapes are blank.  Copy 
w to tape 2 track 1 and set track  2 to point at its  start.   Write 01

onto tape 3 as  the current state.

To take a  step look at the current state (tape 3) and current tape 
symbol (tape 2).  Look through m (tape 1) for a transition using these. 
If you find one update tapes 2 and 3.  If you don't find one go to a 
REJECT state.  If tape 3 ever gets  a final state, halt and accept 
m1111w.



Theorem: Lu is not recursive.
Proof: We'll actually show that the complement of Lu is not 
recursively enumerable (as it would have to be if Lu was recursive).

Suppose there was a TM T that accepted the complement of Lu. 
Make a new TM T' so that T'(w) = T(w1111w).  T' accepts w if w1111w 
is not in Lu . This means T' accepts w if w is in Ld.  We know Ld is not 
recursively enumerable, so T' (and  hence T) can't exist.



The structure of this argument is important.  Suppose we know 
problem P1 is not recursive (or RE).  If we can how how to turn an 
instance of P1 into a problem P2 (reducing P1 to P2) then a decider 
(accepter) for P2 would also decide (accept) P1.  This means P2 also  
can't be recursive (RE).



So far we know Ld is not recursively enumerable and Lu is recursively 
enumerable but not recursive.

Here are some additional concrete languages:
Le = {w | w is the encoding of a TM that accepts no strings}
Lne = {w | w is the encoding of a TM that accepts at least one string}

Note that Le is the complement of Lne.

111 (the encoding of Grumpy) is in Le.
Any binary string that doesn't represent a TM is in Le.



Theorem: Lne is recursively enumerable
Proof: Make a non-deterministic TM that, given w writes 111 after w 
and then writes an arbitrary binary string s. This TM then runs the 
universal simulator on w111s. If w accepts any string there is a path 
for this non-deterministic TM to accept w.

Theorem: Lne is not recursive. 
Proof.  Suppose TM T decides Lne. We will use T to build a decider for 
Lu.  Given a pair (M,w) build a new TM M':

For every x M' accepts x if M accepts w, and rejects x otherwise
(i.e., M' ignores its input and simulates M on w.)
If M accepts w then M' accepts all strings. If M does not accept w 
then M' is in Le. A decider for Lne will decide if M accepts w and so is 
a decider for Lu, which can't exist.



Moral:
Lne is recursively enumerable but not recursive. 
Le is not even recursively enumerable.



Rice's Theorem (H.G. Rice, 1951. This was his PhD dissertation):
Let  A be any non-trivial property of recursively enumerable 
languages.  Then A is undecidable.

What  this means:  We identify a property of languages (such as being 
nonempty) with the set of TMs that accept the languages with this 
property. . A nontrivial property is one that applies to some but not all 
languages.

Rice's Theorem, version 2:  Let A be any set of TMs.  Let
A* =  {M | M is a TM that accepts the same language as some TM in A}

Then if A* is neither empty nor the set of all TMs  A* must be 
undecidable.



Proof of version 2:  First assume A* does not include the Grumpy TM 
G.  Since A* is not empty, let M* be any TM in A*.  We will use a 
decider for A* to build a decider for Lu.

Given any (M,w) pair construct a new TM M'  where

M'(x) = M*(x)  is M accepts w
M'(x) = M(w) if M does not accept w

To do this M' first simulate M on w.  If M ever accepts w, M' then 
similates M* on x.  



Note that if M does not accept w then M' accepts nothing -- M' is 
equivalent to the grumpy TM, which we started out assuming is not 
in A*.  So if M does not accept w then M' is not in A*.  On the other 
hand, if M does accept w then M' accepts the same language as M*, 
so M' is in A*.

Altogether M' is in A* if and only if M accepts w.   A decider for A* 
gives us a  decider for Lu.  This can't be, so A* must be undecidable.

We have assumed that A* does not contain Grumpy.  If it does 
consider the complement of A*.  This is nontrivial and doesn't 
contain Grumpy.  The argument above shows that the complement 
must be undecidable, so A* must be undecidable.



The Post Correspondence Problem  (Emil Post, prof at CCNY)  Start 
with two sets of strings A1..An and B1..Bm.  Is there a  set of indices i1, 
i2, ... ik so that  Ai1Ai2..Aik= Bi1Bi2..Bik.

For example:

The solution is  2 1 1 3:
A2A1A1A3 = 101111110 = B2B1B1B3

A1 = 1 B1 = 111

A2 = 10111 B2 = 10

A3 = 10 B3 = 0



We won't show it, but the Post Correspondence Problem is 
undecidable.  A number of important "grouping" questions, such as 
whether a grammar is ambiguous, reduce to PCP.


